
Continuous Integration: Aspects in Automation
and Configuration Management

Christian Rehn

TU Kaiserslautern, 67663 Kaiserslautern, Germany,
c_rehn@cs.uni-kl.de

Seminar supervisor: Bo Zhang

Abstract. One of the key practices in agile methods is continuous inte-
gration (CI). Instead of integrating the software in a separate phase at
the end of an iteration CI requires all developers to integrate, build and
test at least once a day resulting in several integrations per day. In this
way integration problems are detected early in the software development
process and thus can be fixed more easily. CI demands a high degree of
automation and also has effects on software configuration management
(SCM). This paper discusses CI, which issues have to be considered for
automation and which effects it has on SCM.

Keywords: Continuous Integration, CI, Automation, Software Config-
uration Management, SCM, Agile, Extreme Programming, XP

1 Introduction

Writing software is difficult and writing bigger software is even more difficult.
So just writing some code is not enough to produce quality software. The “code
and fix” approach does not scale and led to what is called the software crisis.
In order to solve this problem software engineering and the plan-driven software
development approaches arose. They work quite well for some kinds of projects
but have problems when requirements remain fuzzy and change frequently. For
this reason agile processes came up, which are much more able to respond to
changing requirements. [15] [12]

Agile methodologies set much less value on planning and documentation in
favor of lean and responsive processes that are able to react to changing require-
ments quickly. But in order to compensate for the lack of planning and documen-
tation several practices have to be adopted. So problems which normally would
have been avoided by planning must be detected early in the development pro-
cess in order not to have a bad influence on productivity, schedule, and quality.
One of these practices is continuous integration or CI for short.

Extreme programming explicitly demands these practices to be in place [12]
whereas other agile processes like Scrum don’t mention them. Nevertheless they
are necessary for these processes to work. This raises the question how important
these practices are, which effects they have, and in which environments and



2 Christian Rehn

projects they should be applied. Apart from agile methodologies some of these
practices might also be valuable for traditional plan-driven development.

Although CI is one of the least controversial XP practices the there is the
question on how valuable CI is for agile and plan-driven software development
and what has to be considered when adopting this technique. Two aspects of
CI are discussed in the following. First of all automation is the key-aspect of
CI as CI is all about automating the build process and getting rapid feedback
whether something went wrong. And the second aspect which is addressed here
is configuration management and branching in particular. Adopting CI implies
the use of certain strategies for branching and avoiding others. These aspects
will be discussed later, but before that the basics of CI are described.

2 Basic Idea of CI

2.1 Traditional Integration

Traditional waterfall-like processes typically have a separate phase “integration
and test” after the implementation phase. After all the modules of the software
have been implemented, they have to be assembled and tested in order to find
out which problems remain despite all planning.

This leads to some problems and these problems even increase in agile pro-
cesses where planning, i. e. upfront-design, is reduced to a minimum. Having
integration late in a project (or in an iteration) means that certain faults will be
detected late. There might be technical problems due to misunderstandings of a
certain technology, interfaces of independently developed components not fitting
together, and defects because of wrong assumptions and misunderstandings be-
tween developers. This makes the effort of the integration phase hard to predict
and leads to late projects. The later defects are found the more expensive they
are.

In plan-driven processes these effects are mitigated through careful planning
and thorough inspections. Agile processes on the other hand do integration and
testing early and not in a separate phase. In this way faults are detected just
after they are introduced which also decreases the time to locate and fix the
cause of the problem.

2.2 Continuous Integration

A key principle of agile thinking is doing everything in small and easy steps
but continuously. Development is done in small iterations, estimation is done for
small amounts of work, refactoring is done in small steps, etc. Martin Fowler
calls this principle “frequency reduces difficulty” [19] which essentially is an
specialization of the well known “divide and conquer”.

Transferred to integration and test this means that integration and test is
done very often meaning continuously throughout the development process. Ev-
ery developer integrates at least once a day which results in several integrations



Continuous Integration 3

per day as there are several developers. In order to make this feasible integra-
tion is completely automated. A commit to the source code repository triggers
compilation, automated tests, and automated feedback on the success of the
integration. [13]

Technical problems are detected early on, as integration tests will reveal
them. Integration tests will also find design defects and the fact that everyone
commits to the same repository improves communication among the developers
and thus avoids misunderstandings.

Furthermore, maintaining an always integrated, always quality assured code
base assures that development is on the right track. A demo of the current project
state can always be shown to customers and managers which enables feedback
from the customer side and makes progress of the development visible. So CI is
also a technique to reduce risk. Andrew Hunt and Dave Thomas call this risk
reduction perspective of the technique “tracer bullets” [21].

As many defects are found just after they are introduced, they are easier
to locate and remove. Developers will remember easier what they have done
and they can also use the version control system to show the altered code lines
which most likely contain the fault (“diff debugging”). Cumulative defects, i. e.
several faults influencing each other and producing more complicated failures,
are avoided which decreases the time needed for rework. [16]

In order to achieve these positive effects, there need to be rapid feedback
mechanisms in place, which tell the developers if recent changes “broke the
build”, that means if defects have been introduced. Hence integration must be
fast and thus automated. Furthermore, the result of the integration (meaning
compilation, tests, etc.) needs to be made visible. This can be done by automatic
emails or large monitors but also via lava lamps or ambient orbs (a ball shaped
device connected to the network that can glow in different colors) [13]. Research
suggests that a combination of informative emails and visible but unobtrusive
devices such as lava lamps is well suited for agile teams. [10]

2.3 Integration Strategy Selection

CI has advantages and disadvantages, so it’s not a replacement for traditional in-
tegration in general. Which integration approach is best, depends on the project,
it’s characteristics, and it’s environment.

Obviously CI fits to agile processes like XP. Moreover, XP demands contin-
uous integration to compensate for the lack of planning. Other agile processes
don’t mention or demand CI directly. Indirectly though there is the need for find-
ing defects early. And because there is only a minimum of planning, a technique
like CI is necessary. So if a project is done in an agile way, CI is the integration
approach to choose.

But also for traditional plan-driven projects, CI can be beneficial. Planning
can avoid many faults upfront, but there will inevitably be some defects slipping
through. CI can be used for finding even more faults early on which reduces
the effort later in the project and thus may improve predictability. Nevertheless



4 Christian Rehn

there is a tradeoff between the benefit of finding and correcting defects fast and
the additional effort setting up and maintaining the CI environment. There also
might be some learning effort for the developers to accommodate with the new
technique.

Certainly CI only pays off for projects of a certain size. For very small projects
the setup effort for a full-fledged CI environment may be considered too high
compared to the benefit. So here a more traditional integration approach should
be used. Nevertheless automation can be used gradually. So if a complete CI
environment is too costly, it is possible to automate a part of the build process
resulting in a lower benefit but also a lower effort. The same can be be done
for legacy projects. CI can be introduced gradually slowly shifting from a more
traditional integration approach to full-fledged CI.

Scaling the integration technique to very large projects is difficult—both
with traditional integration and CI. The problems with traditional integration
increase with the project size leading to even more difficult integration phases.
On the other hand also continuous integration gets harder. More developers are
involved and more commits are made which raises the possibility for broken
builds. Also build times increase with the code size. This leads to fewer and
bigger integrations and the advantage of CI disappears.

Normally agile projects are scaled down instead of the techniques being scaled
up. That means instead of employing many developers, only a small team of
smart people works on the product. Because of their higher productivity, a less
bureaucratic process, and a simpler design the overall productivity is not influ-
enced that badly. [14] Nevertheless if it is necessary to have big agile projects,
there are also techniques for scaling CI [23]. One is to have sub-teams on loosely
coupled subsystems doing CI only for their subsystem.

As now the basic idea of CI has been explained, in the next two sections
two aspects of CI namely automation and configuration management will be
discussed in more detail.

3 Automation

3.1 Automated Build

Without automation the integration process is time-consuming and error-prone.
Doing integration very often when there is no or only insufficient automation in
place is infeasible and would result in poor productivity and bad quality.

Since manual tasks are prone to errors they should be eliminated. Ideally in
a CI environment a commit to the source code repository triggers a prior update
from the repository, a compilation, database setup, several forms of tests, auto-
matic code analysis, deployment to a production-like system and gives the devel-
oper a rapid feedback if there are problems with the commit. All this together is
called a build in CI, so “build” not only means compile but all automated tasks
relevant for finding defects early. [13]



Continuous Integration 5

Building daily came up in the 90ies and was practiced at Microsoft for ex-
ample. Building the software every day was a big deal those days and having
the developers commit every day still seamed impractical so the daily build only
included new code because several developers integrated every few days. [22]

What was considered hard fifteen years ago is now a common practice. These
daily or “nightly” builds are now adopted widely and several integrations per
day are not regarded infeasible anymore. Also the number of activities that are
included in a build has changed. In the past only a “smoke test” was conducted.
Such a smoke test only determines if the system “smokes” when it is run, i. e.
if there are obvious problems. As now the computational power of computer
systems has increased, more thorough tests can be included in a build. Beside
more thorough testing also static and dynamic analysis can be conducted to find
further problems or check adherence to coding guidelines.

The purpose is really to find as many defects as possible automatically in
order to reduce the time between introducing, detecting, locating and correcting
the fault. The longer this time gets the more difficult the following tasks will
be. And automation is the key to keeping builds fast. And also the feedback
mechanism must make sure that “the right information [gets] to the right people
at the right time and in the right way” [13, p. 205].

Keeping build time fast is easy for small and simple projects, but it is hard
for large projects. Even today it is infeasible to run all tests on a project with a
million lines of code every time a developer checks in some code. Thus there are
typically several types of builds.

Private builds run on the developer machine prior to a commit on order
to reduce the probability that the commit introduces defects influencing other
developers. Then a commit-triggered build is done on a separate integration
machine possibly followed by some secondary builds that include more time-
consuming tests. These secondary builds can also be done time-triggered at
night. Finally there might be some tasks which are that costly that they are
done even more infrequently, i. e. at the end of a iteration as a kind of release
build. By shifting more complex tasks to the more infrequent build types, build
time can be kept small. In this way you can trade off efficiency for effectiveness
of the build process. [13] [16]

3.2 Tools Used for Automation

Over the past years several tools were developed which help to automate the
aforementioned integration tasks. In principle automation could also be done
using simple shell scripts, but these tools make automation easier, portable and
flexible.

First of all there are test automation tools like JUnit [7] which help automat-
ing all kinds of tests. Despite the name JUnit and others are not only able to
automate unit tests but various kinds of tests.

In order to invoke compilation and testings there are build automation tools
like Ant [1] or Maven [2]. These tools let you declaratively configure what has



6 Christian Rehn

to be done in order to integrate a software system. They are independent from
integrated development environments and can be run without any user interac-
tion.

Additionally there are specific CI servers like Hudson/Jenkins [6] or CruiseC-
ontrol [4]. These tools automatically invoke the integration process (by using a
build tool) when a commit to the source repository is done. Therefore, they
monitor the source code repository for changes. After integration is done, they
provide feedback, summaries, and statistics.

3.3 What to Consider When Automating

Software development always comprises a number of tradeoffs. The same holds
for automation. What and how to automate depends on characteristics of the
project, the organization, the process, and the environment.

A high degree of automation only pays off for projects of certain size and is
especially beneficial for team-based development. Nevertheless even single devel-
oper projects can take advantage from automation. On the other hand automat-
ing a large project bears several challenges one of which is test time. Plan-driven
projects can benefit from automation, but agile projects will even require a cer-
tain degree of automation in order to ensure a high quality of the product.

When automating tests, it is important to distinguish between unit tests
(which only test one module) and component tests1 (testing a set of modules).
Unit tests need to be fast and isolated from other parts of the system. So there
need to be proper test dummies ensuring isolation. Architecture also has an
influence on that. A good architecture (using for example dependency injection)
makes writing fast unit tests easy, a bad one hinders it. So architecture is very
important for a proper build automation.

4 Configuration Management

4.1 Branching Models

Version control systems (VCS) like Subversion [3] are widely used in practice.
They facilitate collaborative software development, versioning and archiving of
source code and other kinds of files. They typically also let you creating branches
meaning parallel versions of the same project. A branch can be created for de-
veloping certain features in isolation, for some bigger changes, for different plat-
forms, for different releases, for different customers and so on. Development in
different branches is parallel and isolated from each other. That means when
some changes (e. g. a bug-fix) of branch A also need to be done on branch B,
they have to be transferred (i. e. merged) to this branch. In figure 1 for example
the branch “check due date” is merged to the mainline in commit C13. Despite
1 In plan-driven processes component tests are called integration tests.



Continuous Integration 7

tool-support for merging, this task is easy for small changes but can be very
difficult and error-prone for large ones.

The branching and merging features of VCSs can be used in various ways—
some of which are beneficial and others which are hampering. So in order to use
branching properly there has to be a sound branching model describing when
and how to use branches for which purposes [24].

If there are multiple development branches, the integration process comprises
merging these branches so that there is a revision containing all features that
should be included in the end product. This means merging is an integral part
of integration. In order to figure out whether two features interfere with each
other, CI demands that every feature is merged to the mainline (i. e. the main
branch) every day. This means that two features which should finally go into the
same product may not reside in different branches.

4.2 Feature Branches

Fig. 1. A Repository containing one mainline and three feature branches.

A commonly used branching model is called feature branch [17] [11]. In this
model for every new feature a branch is created and later merged into the main-
line. There can also be commits to the mainline, but these are preferably minor
changes and bug-fixes. This has the advantage of being able to easily select the
features that should be included in the final release. Only these features are
merged to the mainline. Incomplete and not thoroughly tested features remain
in their feature branch and can be included in later releases.

Figure 1 shows an example of a repository of a library system containing
a mainline and three feature branches. First the feature “check due date” is
merged into the mainline (Commit C13) and later also the feature “lending
statistics”—which obviously took longer to develop—is merged (Commit C15).
The long-term migration task “introduce Hibernate” is still under development
and not merged, yet.



8 Christian Rehn

Due to the private feature branch each developer works isolated from the
others. There are no other commits on the feature branch disturbing the de-
velopment of the feature. On the other hand this also means that integration
is deferred till the feature branch is merged into the mainline. Over time the
branches diverge and the integration becomes more and more complex.

In the example above merging of “check due dates” just had to consider C8
and C11. For merging “lending statistics” not only the new mainline commits
C4, C8, and C11 have to be included but also C13 which contains C7 and C10.
Even worse with the long-running task “introduce Hibernate” which is still not
merged. When this feature will be merged into the mainline somewhen in the
future, all other features which have been merged till then have to be considered.
Inevitably some of these will interfere with the changes which had been developed
unaware of the others.

The more feature branches there are, the more complex the integration gets.
And due to the isolated development of the features, potential problems remain
undetected until integration is done. So in order to make the feature branches
model work, there has to be a considerable amount of upfront planning to avoid
these problems. Obviously this does not fit to agile development. For this reason
CI demands that every developer commits to the mainline and not to a private
feature branch.

4.3 Feature Toggles

Normally it’s better not to have pending features when the software is about
to be released. Often this can be achieved by splitting up features into smaller
features. Nevertheless there might be features which cannot be subdivided that
easily so they take longer than one iteration to be developed. Hence there is the
need for isolating features. As an alternative to feature branches feature toggles
can be used for that purpose. [18]

Instead of separating incomplete features using version control systems they
can be isolated by means of programming. In the simplest case this can be done
by not including a button in the user interface so the feature cannot be invoked.
There are also more sophisticated feature toggles such as compiler switches and
switches in configuration files or command-line options. In this way incomplete
features can be switched on and off.

In the example above the features “check due date” and “lending statistics”
could be implemented right in the mainline. And a simple compiler switch could
be used to disable these features by default as long as they are incomplete. Or
even simpler: the GUI part could be developed last, so there is even no need for
an explicit toggle.

Of course this means that incomplete and immature features will end up in
the delivered system. Obviously this increases the risk of unintended side-effects
and hidden defects. In order to keep the product quality high, excessive testing
is used as common in agile processes. Furthermore, it is necessary to keep track



Continuous Integration 9

of the feature toggles and which features they control. After the feature is ready
and has proven it’s stability, the feature toggle has to be removed.

4.4 Branch by Abstraction

Fig. 2. A component is substituted with a new implementation through branch
by abstraction.

Another alternative, which is especially helpful for long-running changes, is
branch by abstraction (BBA). Instead of creating a second development branch
in the VCS, doing the changes there and merging back again, the changes are
separated by architectural means.

Long running changes like the migration from directly using JDBC to Hiber-
nate typically have the problem that the system is not working for a long time.
This can be avoided by creating a branch in the VCS, but a separate branch
means by definition that these changes are not yet integrated into the mainline.
This violates the principles of CI and imposes merging problems that would
otherwise be avoided by CI.

Thus an abstraction of the functionality to be changed is created (see figure 2
(2)). After that the system is refactored such that it depends on the abstraction.
In the next step a new implementation of the abstraction is created (3). The
automated tests make sure that the new implementation can substitute the old
one. Furthermore, there can be feature toggles that switch between the old and
the new implementation. When the new implementation works as expected, the
old one can be removed (4) and also the abstraction might be removed if it has
no advantages (5). In this way there is a gradual change to a new implementation
and the product remains working all the time. Furthermore, error-prone merging
is avoided. [20]

In the “introduce Hibernate” example the OldServiceProvider would be the
data layer using JDBC directly and NewServiceProvider would use Hibernate.
Abstraction is then an artificial abstraction layer above the data layer. As such
a further abstraction is uncommon and has no advantages, it is removed after
the new implementation is in place.



10 Christian Rehn

Of course there are situations where such abstractions already exist. So they
can be used without some artificial extra abstraction component and they also
do not need to be removed in the end.

Architecture also plays a major role here. If there is a component-based archi-
tecture with clear interfaces maybe also using dependency injection frameworks
like Spring [9], BBA is easy to use. But if coupling is tight, such changes become
really hard.

4.5 Branching Strategy Selection

When CI is practiced, feature branches should be completely avoided as they
contradict to the principles of CI. The key for doing so is a flexible architecture.
The need for branches can often be avoided by separating concerns in to dif-
ferent modules. Dependency injection frameworks are helpful for doing so. For
example platform-specific variants of a software do not have to be developed in
separate branches. Instead there can be separate components for each platform.
A configuration file then specifies which components to take for which platform.

If there are bigger changes that are not architecturally separated yet, BBA
can be used and smaller changes can be separated by feature toggles. Further-
more, if the GUI integration of a feature is developed last, even feature toggles
are not necessary as these feature remain implicitly toggled off until they are
done.

4.6 Distributed Version Control Systems

Currently there is a change in version control systems. Apache Subversion [3] is
still widely used, but it is foreseeable that distributed version control systems
(DVCS) like git [5] and Mercurial [8] will gain more and more popularity. These
systems are based on a different versioning model and are much more flexible
than centralized systems.

This raises the question of how to use their new capabilities in CI and non-CI
environments. Much of the flexibility comes from using directed acyclic graphs
as a repository model instead of a linear history and more sophisticated merging
capabilities. With git there is even the possibility to change versioning history.
So the choice of the VCS directly has an influence on how to select the branch-
ing strategy. On the other hand the influence of the rise of DVCSs is still not
completely understood and more research in this area is needed.

5 Conclusion

The traditional integration approach with a separate integration phase at the
end of an iteration has problems and does not fit to agile software development.
Continuous integration (CI) is the proper alternative to be used when developing
agile. Setting up and maintaining a CI environment imposes some effort but



Continuous Integration 11

reduces risk and makes integration easier by integrating in small but frequent
steps.

Even for plan-driven software development CI can be valuable as it helps
finding defects early. This comprises a considerable amount of automation. On
the other hand using CI or not is not a binary decision. There are plenty of possi-
bilities to introduce CI stepwise. Especially automation can be applied gradually
starting from just automatic compilation to full-fledged CI comprising automatic
compilation, several forms of automated tests, automated static and dynamic
code analysis, automated feedback, and even automatic deployment. There are
also many valuable tools that help automating all that.

For configuration management it is important to think about a proper branch-
ing strategy. Feature branches are popular but don’t fit well to CI. As a substi-
tute, feature toggles and branch by abstraction may be used. But beside all that,
it is important to notice that capabilities of modern VCSs are not a substitute
for a good architecture. If the architecture is designed properly many branching
problems are avoided. Additionally a good architecture also makes code testable
and is, therefore, important for automation and CI in general.

References

1. Apache Ant, http://ant.apache.org/, [accessed 2011-12-03]
2. Apache Maven, http://maven.apache.org/, [accessed 2011-12-03]
3. Apache Subversion, http://subversion.apache.org/, [accessed 2011-12-03]
4. CruiseControl, http://cruisecontrol.sourceforge.net/, [accessed 2011-12-03]
5. git, http://git-scm.com/, [accessed 2011-12-03]
6. Jenkins, http://jenkins-ci.org/, [accessed 2011-12-03]
7. JUnit, http://www.junit.org/, [accessed 2011-12-03]
8. Mercurial, http://mercurial.selenic.com/, [accessed 2011-12-03]
9. Spring, http://www.springsource.org/, [accessed 2011-12-03]
10. Ablett, R., Maurer, F., Sharlin, E., Denzinger, J., Schock, C.: Build notifications

in agile environments. Tech. Rep. 2008-888-01, Department of Computer Science,
University of Calgary (2008), http://pages.cpsc.ucalgary.ca/~denzinge/bib.
html#reports, [accessed 2011-12-03]

11. Appleton, B., Berczuk, S.P., Cabrera, R., Orenstein, R.: Streamed lines: Branch-
ing patterns for parallel software development (1998), http://www.cmcrossroads.
com/bradapp/acme/branching/line-elems.html#FunctionalBranch

12. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional (1999)

13. Duvall, P.M., Matyas, S., Glover, A.: Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley Professional (7 2007)

14. Fowler, M.: Large agile projects (2003), http://martinfowler.com/bliki/
LargeAgileProjects.html, [accessed 2011-12-03]

15. Fowler, M.: The new methodology (2005), http://martinfowler.com/articles/
newMethodology.html, [accessed 2011-12-03]

16. Fowler, M.: Continuous integration (2006), http://martinfowler.com/articles/
continuousIntegration.html, [accessed 2011-12-03]

http://ant.apache.org/
http://maven.apache.org/
http://subversion.apache.org/
http://cruisecontrol.sourceforge.net/
http://git-scm.com/
http://jenkins-ci.org/
http://www.junit.org/
http://mercurial.selenic.com/
http://www.springsource.org/
http://pages.cpsc.ucalgary.ca/~denzinge/bib.html#reports
http://pages.cpsc.ucalgary.ca/~denzinge/bib.html#reports
http://www.cmcrossroads.com/bradapp/acme/branching/line-elems.html#FunctionalBranch
http://www.cmcrossroads.com/bradapp/acme/branching/line-elems.html#FunctionalBranch
http://martinfowler.com/bliki/LargeAgileProjects.html
http://martinfowler.com/bliki/LargeAgileProjects.html
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html


12 Christian Rehn

17. Fowler, M.: Feature branch (2009), http://martinfowler.com/bliki/
FeatureBranch.html, [accessed 2011-12-03]

18. Fowler, M.: Feature toggle (2010), http://martinfowler.com/bliki/
FeatureToggle.html, [accessed 2011-12-03]

19. Fowler, M.: Frequency reduces difficulty (2011), http://martinfowler.com/
bliki/FrequencyReducesDifficulty.html, [accessed 2011-12-03]

20. Hammant, P.: Branch by abstraction (2007), http://paulhammant.com/blog/
branch_by_abstraction.html, [accessed 2011-12-03]

21. Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley Professional (1999)

22. McConnell, S.: Best practices: Daily build and smoke test. IEEE Software 13(4),
144, 143 (1996), http://www.stevemcconnell.com/ieeesoftware/DailyBuild.
pdf, [accessed 2011-12-03]

23. Rogers, R.O.: Scaling continuous integration. LNCS 3092, 68–76 (2004)
24. Walrad, C., Strom, D.: The importance of branching models in SCM. IEEE Com-

puter 35(9), 31–38 (sep 2002)

http://martinfowler.com/bliki/FeatureBranch.html
http://martinfowler.com/bliki/FeatureBranch.html
http://martinfowler.com/bliki/FeatureToggle.html
http://martinfowler.com/bliki/FeatureToggle.html
http://martinfowler.com/bliki/FrequencyReducesDifficulty.html
http://martinfowler.com/bliki/FrequencyReducesDifficulty.html
http://paulhammant.com/blog/branch_by_abstraction.html
http://paulhammant.com/blog/branch_by_abstraction.html
http://www.stevemcconnell.com/ieeesoftware/DailyBuild.pdf
http://www.stevemcconnell.com/ieeesoftware/DailyBuild.pdf

	Continuous Integration: Aspects in Automation and Configuration Management
	Christian Rehn
	Introduction
	Basic Idea of CI
	Traditional Integration
	Continuous Integration
	Integration Strategy Selection

	Automation
	Automated Build
	Tools Used for Automation
	What to Consider When Automating

	Configuration Management
	Branching Models
	Feature Branches
	Feature Toggles
	Branch by Abstraction
	Branching Strategy Selection
	Distributed Version Control Systems

	Conclusion



