
Exception Handling in Multi-Layered
Systems

Layers and Exceptions

Christian Rehn

ADUG Sydney Meeting
21st November 2012

Who Am I? [Slide 2]

• Christian Rehn

• CS Student at the University of Kaiserslautern

• Moderator and editor for Delphi-Treff (some German Delphi website)

• http://www.christian-rehn.de/

1

Organisational Stuff [Slide 3]

• A basic understanding of OOP is needed

• Few text on the slides
– Better for presentation
– There are more detailed talk notes online: http://www.christian-rehn.de/

1In contrast to the rest, the logos, of course, aren’t CC licensed.

1

http://www.christian-rehn.de/
http://www.christian-rehn.de/

– German version is even more detailed but I haven’t had the time to translate
everything

• Please give feedback (what can I do better?)

Overview [Slide 4]

Contents
1. Motivation 3

1.1. Why Layers? . 3
1.2. Why Exceptions? . 4
1.3. Putting Everything Together . 5

2. Dependencies and Layers 6
2.1. Dependencies . 6
2.2. Coarse Structure . 8
2.3. Layers and Tiers . 11

3. Exceptions 16
3.1. Exceptional Cases . 16
3.2. Exceptions: Basics . 20
3.3. Exceptions in Detail . 22

4. Putting Everything Together 28
4.1. Exceptions and Layers . 28
4.2. Exceptions and Tiers . 30

A. Appendix 33

2

1. Motivation
1.1. Why Layers?

Why Think? (1/2) [Slide 6]

Why should we think about all that?

Why Think? (2/2) [Slide 7]

the following picture shows the actual structure of a real software.

2

And that’s just one subsystem of about 20. When software looks like this, maintenance
becomes a nightmare.

This graphic has been produced by a software written at the Fraunhofer Institure for
Experimental Software Engineering (IESE). It shows the actual dependencies between
the classes. We can assume that the developers weren’t idiots, so we see that it’ s really
difficult to retain a good architecture.

2Tanks to the Fraunhofer IESE for the picture

3

Layers [Slide 8]

Layers are one of the most important ways to structure software.

1.2. Why Exceptions?

Why Exceptions? [Slide 9]

try
while not EndOfTalk do
begin

Present(slide) ;
GoToNextSlide;

end;
except

on e: EFireAlarm do
begin

Panic;
Shout(e.Message);

end;
end;

4

1.3. Putting Everything Together

And what’s the link between these two topics? [Slide 10]

on e: EFireAlarm do
begin

Panic;
Shout(e.Message);

end;

5

2. Dependencies and Layers
2.1. Dependencies

Ripple Effects [Slide 13]

3

Ripple Effects
Changes in one part of the system impose further changes in other parts which again
impose other changes and so on. Changes ripple though the code, and the code gets
fragile.

• Ripple Effects result from too many and too strong dependencies

Dependencies [Slide 14]

myFancyOpenDialog.ShellTreeView.Path := pathToMyDocuments;
myFancyOpenDialog.FileNameEdit.Text := ’newFile.txt’;
if myFancyOpenDialog.ShowModal = mrOK then
begin

pathToSaveFile := myFancyOpenDialog.ShellTreeView.Path +
myFancyOpenDialog.FileNameEdit.Text;

SomeMemo.Lines.LoadFromFile(pathToSaveFile);
end;

3CC-BY-SA Rainer Zenz http://commons.wikimedia.org/wiki/File:2006-01-14_Surface_
waves-2.jpg

6

http://commons.wikimedia.org/wiki/File:2006-01-14_Surface_waves-2.jpg
http://commons.wikimedia.org/wiki/File:2006-01-14_Surface_waves-2.jpg

The above code shows a bad implementation of an OpenDialog. Think of what you
would have to do in case of an internal change and look at TOpenDialog for how to do
it better.

Cyclic Dependencies [Slide 15]

• Cyclic Dependencies create strong couplings

• One module in the cycle depends on all others

• Better:
– Dependency relations should be acyclic (dependency graph is a DAG4)
– Even better: hierarchical (dependency graph is a tree)

Circular Unit References [Slide 16]

[DCC Fatal Error] UnitXY.pas(7): F2047 Circular unit reference to ’UnitXY’

Such an error often signals a design problem.

4http://en.wikipedia.org/wiki/Directed_acyclic_graph

7

http://en.wikipedia.org/wiki/Directed_acyclic_graph

2.2. Coarse Structure
To avoid the aforementioned problems it is necessary to think about architecture.

Architecture [Slide 17]

Architecture: Definition by SEI
The software architecture of a program or computing system is the structure or structures
of the system, which comprise software elements, the externally visible properties of those
elements, and the relationships among them. [1]

Architecture: My Definition
The software architecture describes the coarse structures of the software and defined
how to think about it as a developer.

Coarse Structure [Slide 18]

A coarse decomposition structure as a part of architecture

Architecture is more than just a coarse structure. In particular software doesn’t have
just one structure but many structures. Just like a house not only has a floor plan. There
is interior design, plumbing, electricity, etc. Here we only discuss a coarse decomposition
structure.

8

Constrain Communication (1/2) [Slide 19]

• A good architecture constrains the comminucation among the modules and disal-
lows certain dependencies.

• The above package diagram shows a coarse structure for a piece of software. Classes
are grouped into logical units (in UML: “packages”; in the diagram A, B, C, D
and E). Such packages could be “GUI”, “DB Access”, “Application Logic”, etc.

• The architecture defines rules for all modules.

9

Constrain Communication (2/2) [Slide 20]

• In UML class diagrams all arrows point into the direction of the dependency.

• Package diagrams show bigger but also static structures.

• Relationships among packages must be retained by the classes contained in the
packages.

Dependency Inversion: Events [Slide 21]

property OnSomeEvent: TNotifyEvent
read FOnSomeEvent write
FOnSomeEvent;

10

• Sometimes you want to make a method call in the “wrong direction”.

• There are several possibilities how to solve that problem: Callbacks, Closures,
Delegates, OO dependency inversion, . . .

• In Delphi typically events are used

2.3. Layers and Tiers

Layers [Slide 22]

• Often layers are used to constrain communication
– Higher layers may access lower ones (but never the other way around)
– A stricter variation: Only the next lower layer may be accessed

• Layers are abstractions
– Higher layers (e. g. GUI) are more concrete and specific for an application
– Lower layers comprise more and more generally usable functionality

• Layers can again be decomposed into sub-layers

11

Layers and the Facade Pattern [Slide 23]

• Layers are conceptual groupings in the code

• If you want to make layers replaceable, you need defined interfaces

• The facade pattern helps [3]

Layers Everywhere [Slide 24]

• Networking:
– Physical layer, link layer, network layer, transport layer, application layer

• APIs and Frameworks:
– x86, WinAPI, RTL, VCL/FM
– x86, WinAPI, CLR, .NET-Framework, SWF/WPF

• Typical Information Systems
– GUI, application logic, data access

• . . .

Layers are everywhere. It’s an architectural pattern [2].

12

1, 2, 3, . . . , n Layers [Slide 25]

• One layers: Everything is done in the form/every class may access every other ⇒
chaos

• Two layers: e. g. form + data module

• Three layers: form + application logic + base layer (or similar)

• . . . Other breakdowns possible . . .

Be careful: Too many layers is bad, too. Everything gets more complex.

The Typical Three Layer Architecture [Slide 26]

Typical information systems have three layers. Where to make the cuts may vary.

13

Tears? – Tiers! [Slide 27]

5

Layers vs. Tiers [Slide 28]

• Layer: logical separation

• Tier: physical separation

Tiers may be deployed to separate computers.

1-Tier [Slide 29]

• 1-Tier: Everything on one machine
5CC-BY-SA 2.0 by Crimfants http://commons.wikimedia.org/wiki/File:Crying-girl.jpg

14

http://commons.wikimedia.org/wiki/File:Crying-girl.jpg

• Examples:
– Embedded databases (SQLite & Co.), flat files, . . .
– Simple programs without databases
– Mainframes

2-Tier [Slide 30]

• 2-Tier: theres a client and a server

• Depending on where the application logic is deployed to it’s a thin or a fat client
– 2-Tier (thin client): client + application server
– 2-Tier (fat client): application client + db server

3-Tier, 4-Tier, n-Tier [Slide 31]

• 3-Tier: (thin) client + application server + db server

• 4-Tier: (thin) client in browser + web app + application server + db server

15

3. Exceptions
3.1. Exceptional Cases

Exceptional Cases [Slide 33]

If only everything would be normal. . .

An exceptional case is one which differs from the normal situation. Usually we don’t
like such cases but we have to think about them. And in fact they are subject to a large
portion of the bugs. In typical software the normal cases work pretty well. And all those
lovely bugs show up when there is some tiny condition that is not normal.

Note: There are exceptional cases or exceptional situations and there is the Exception
language feature. I will write Exception with a capital ‘E’ when I mean the language
feature and use the normal lower case version in the other cases. Beware that Headings
as well as the first word in a sentence are capitalised either way.

Types of Exceptional Cases [Slide 34]

Avoidable, or not avoidable, — that is the question

We can make a coarse distinction between avoidable and unavoidable exceptions. If
an avoidable exception occurs, this can be considered a bug. You cannot prevent me
from taking scissors and cut the network cable. But you can prevent a division by zero
or an access violation.

Possibilities for Exception Handling [Slide 35]

• Boolean return values

• Error codes

• Error states

• Error handlers

• Assertions

16

• Exceptions

Boolean Return Values [Slide 36]

if OpenDialog.Execute then
begin

...
end;

Easy but limited.

Error Codes [Slide 37]

const
SHELLEXECUTE MAX ERROR = 32;

...

err := ShellExecute (...) ;
if err <= SHELLEXECUTE MAX ERROR then // something bad happened
begin

case err of
ERROR FILE NOT FOUND: ...
ERROR PATH NOT FOUND: ...
ERROR BAD FORMAT: ...

else
...

end;
end;

More powerful but fragile.

17

What’s wrong here? [Slide 38]

if ShellExecute (...) = ERROR SUCCESS then
...

Error States [Slide 39]

DoSomething(...);
if GetLastError <> NO ERROR then
begin

...
end;

Just like error codes but you have to use a separate function or property to get the
information.

Error Handlers [Slide 40]

Event: OnError

Good for components and some special cases. But may get confusing if used too often.

Assertions [Slide 41]

procedure TSomeClass.DoSomething(param: TSomeObject);
begin

Assert(param <> nil);
...

end;

18

Good for parameter checking in private methods. Should only be used for exceptional
cases that are bugs.

Exceptions [Slide 42]

procedure TMyList.Add(item: TMyItem);
begin

if item = nil then
raise EArgumentNil.Create(’Cannot add nil to list.’) ;

...
end;

Very powerful but somewhat complex.

When to Use What? [Slide 43]

• Boolean return values, error codes: if the exception is a regular part of the control
flow (like OpenDialog.Execute)

• Error states: If the return value shall be used for other purposes

• Error handlers: for special cases

• Assertions: for uncovering bugs (i. e. avoidable exceptions)

• Exceptions: for everything else

19

3.2. Exceptions: Basics

How to Raise Exceptions [Slide 44]

if coffeePot .isEmpty then
raise EOutOfCoffee.Create(’You drank too much coffee. Now there’’s nothing

left.’);

Three parts:

• Exception condition

• Exception class ⇒ important for developer

• Message text ⇒ important for user

Stakeholders: The Three Recipients [Slide 45]

20

How to Catch Exceptions [Slide 46]

var
foo: TFoo;

begin
foo := TFoo.Create;
try

try
foo.Bar;

except
// handle Exception

end
finally

foo.Free;
end;

end;

That’s the standard way to catch Exceptions.

How to Handle Exception (1/2) [Slide 47]

• Avoidable Exceptions
– Ignore them
– Log them
– Create a bug report
– Exit program

21

How to Handle Exception (2/2) [Slide 48]

• Unavoidable Exceptions: depends strongly on the concrete situation
– Inform user
– Rollback transaction
– Retry
– Reconnect
– Remove client from the list
– . . .

3.3. Exceptions in Detail

Separating Normal Case and Exceptional Case (1/2) [Slide 49]

if Bla(42) then
begin

FillChar(param, SizeOf(param), 0);
param.value := 21;
o := Blubb(parem);
if GetLastError = NoError then
begin

if o.DoSomething(’not very interesting’) <> SUCCESS then
HandleDoSomethingFailling;

end
else
begin

LogError(’Failure! ’ + GetLastError);

22

ShowMessage(’something bad happened’);
end;

end
else
begin

LogError(’Failure in Bla! ’) ;
ShowMessage(’something bad happened’);

end;

Without Exceptions you have to nest several if-constructs and always consider the
normal case and the exceptional cases at the same time. This has a negative effect on
readability and may impose defects. Furthermore one is tempted to do the exception
handling quick and dirty in order to get the programming running.

Separating Normal Case and Exceptional Case (2/2) [Slide 50]

try
Bla(42);
FillChar(param, SizeOf(param), 0);
param.value := 21;
o := Blubb(parem);
o.DoSomething(’not very interesting’);

except
on e: EDoSomethingFailed do
begin

HandleDoSomethingFailling;
end;
on e: Exception do
begin

LogError(’Fehler! ’ + e.Message);
ShowMessage(’something bad happened’);

end;
end;

Exceptions separates the normal case from the exceptional cases. First you can pre-
tend that there are absolutely no failures, no exceptional cases whatsoever. You can

23

concentrate on writing the normal case. And after the normal case is finished all the
exceptions can be considered separately.

Avoidable or Unavoidable? [Slide 51]

try
...

except
on e: EAccessViolation do
begin

...
end;

end;

Avoidable Exceptions like EAccessViolation should not be handled. They should be
avoided instead. Normally the occurrence of an avoidable Exception can be regarded
a bug. On the other hand unavoidable Exceptions (broken network links, concurrency
effects, etc.) must be handled because there is no chance to avoid them.

FileExists [Slide 52]

if FileExists (someFile) then
begin

LoadFile(someFile);
end;

Avoidable Exceptions should be avoided. But sometimes it is hard to determine
whether an Exception is really avoidable. The code above includes a race condition.

24

It appears only in very specific contexts, so one can regard the above code to be OK,
but nevertheless if you are very precise, this is a bug.

Exception Message [Slide 53]

raise EOutOfCoffee.Create(’You are too thirsty, you idiot ! ’) ;

In the ideal case the Exception message is directly understandable by the user. In
every case it must be understandable for the maintainer, though.

Exception Class [Slide 54]

type
EOutOfCoffee = class(Exception)
end;

The Exception class should name the problem completely. Two different exceptional
cases should always raise two different Exception classes. So don’t raise Exception
directly but use subclassing.

25

A Hierarchy of Exceptions [Slide 55]

More general Exception classes can be caught if the handling is equal for all subclasses.

on-Statements [Slide 56]

try
...

except
on e: ETalkIsBoring do
begin

FallAsleep;
end;
on e: ETalkProblem do
begin

ShakeHead;
end;
on e: EADUGProblem do
begin

Complain(e.Message);

26

end;
end;

Remember that the order of the on-statements is significant.

Existing Exception Classes [Slide 57]

• EAbort

• EArgumentException

– EArgumentNilException

– EArgumentOutOfRangeException

• EInvalidOpException

• ENoConstructException

• ENotImplemented

• ENotSupportedException

• EProgrammerNotFound

The more recent Delphi versions have some common Exception classes in SysUtils.

27

4. Putting Everything Together
4.1. Exceptions and Layers

Exceptions in Layers [Slide 59]

A layered architecture results in cascading method invocations. And down there at
the bottom an Exception can occur. . .

General Rule [Slide 60]

General Rule about Exceptions in Layers
Catch Exceptions at the point where you know how to handle them. Not earlier and not
later.

Rule of Thumb [Slide 61]

Rule of Thumb
If in doubt, raise at the bottom and catch at the top.

28

Problem [Slide 62]

procedure TSettingsDialog.OKButtonClick(Sender: TObject);
begin
try

...
settingsObject.StoreSettings ;

except
on EFileStreamError do // ???
begin
...
end;

end;
end;

• Obviously a FileStream is used; the higher layer knows too much about the in-
ternal workings of the lower layers

• Suppose you change the lower layer so a database is used instead of a FileStream.
In that case this code has to be changed (ripple effect)

Exception Chaining [Slide 63]

procedure TSettings.StoreSettings;
begin
try

...
except

on e: EFileStreamError do
begin
raise ESettingsWriteError.Create(’Could not write settings. ’ , e) ;
end;

end;
end;

29

• The Exceptions are nested. So the upper layer does not know the internal workings
of the lower one and ripple effects are avoided.

• In order to not loose valuable information for the maintainer the old Exception is
remembered in a property InnerException.

• Every layer wraps its own Exceptions around the caught ones, so a chain of Ex-
ceptions is created.

• Recent Delphi versions also provide an additional class method for that very pur-
pose: RaiseOuterException.

• BTW: The same problem also arises when error codes or some similar mechanism
is used. But there it’s much harder not to loose information when mapping lower
level errors to higher level ones.

• See also [4].

4.2. Exceptions and Tiers

Exceptions and Tiers [Slide 64]

• Exceptions are bound to one machine

• You have to explicitly code a mechanism to signal Exceptions over the network
– Serialise Exception information (use error codes or string serialisations)
– Transfer that over the network
– Deserialise
– Raise an Exception again

• Use a wrapper class for this purpose, so the calling classes don’t have to know how
(and that) this happens.

30

• Middleware might already produce such wrappers so you can transparently throw
Exceptions over the network. Webservices are able to do this but I don’t know
how good the code generators for Delphi are6. I haven’t used any middleware for
Delphi, yet. Neither webservices nor DCOM, nor CORBA, nor DataSnap, nor
anything else. So unfortunately I cannot tell which one has which capabilities.

A wrapper can look roughly like this:

Wrapper Classes [Slide 65]

procedure TFooWrapper.DoSomething;
begin

ret := NetworkCallToMethodDoSomethingInSomeFooObjectOnSomeOtherMachine;
case ret of

FOO SUCCESS: // do nothing;
FOO WRITE ERROR: raise EFooWriteError.Create(’could not write...’);
FOO READ ERROR: raise EFooReadError.Create(’could not read...’);

else
raise EFooException.Create(’Unknown Problem with Foo’); // base class or the

Exceptions above
end;

end;

The same technique can be applied if you have DLLs or other libraries which cannot
or do not raise Exceptions and use error codes or some similar mechanism instead.

6I one used webservices in Java and there the generators are bad as the don’t produce real wrapper
classes although they could.

31

Conclusion [Slide 66]

• Layers
– Good architecture constrains the communication among the classes
– Layers are a typical structure which supports this
– Higher layers may access lower ones but not vice versa

• Exceptions
– Separation of normal case and exceptional case
– Avoidable and unavoidable exceptions
– The three recipients of an exception

• Putting it all together
– Exception chaining
– Wrapper classes

Thank You! [Slide 67]

Questions?

32

A. Appendix

Dependency Inversion [Slide 69]

• Sometimes you want to call higher layers from lower ones. But that is not allowed.

• Solutions:
– Callbacks, Events
– In other languages: closures, delegates, . . .
– Dependency inversion (language independent)
∗ General principle with different variants
∗ One variant is the observer pattern [3]

• Dependency inversion: Dependencies can be inverted by adding an additional ab-
straction (base class or interface).

• B does not access A directly. Instead it used the abstract class/interface. A imple-
ments this interface or inherits from this abstract class, respectively. Now B can
call methods from A without knowling it directly. Rather A is now dependent on
the abstract class RequiredByB. The dependency has been inverted.

33

Virtual Machines [Slide 70]

A way of thinking: Layers are virtual machines.

Law of Leaky Abstractions [Slide 71]

Law of Leaky Abstractions
All non-trivial abstractions, to some degree, are leaky. [5]

Abstractions are never perfect. Sometimes you still have to think about aspects that
should normally be abstracted away from you. Don’t surrender but keep that in mind.

34

Guards [Slide 72]

procedure AddItem(AItem: TMyItem);
begin
if AItem = nil then
raise EArgumentNil.Create(’Cannot add nil.’);

...
end;

By the use of so-called guards, also the code which raises the Exception can be sep-
arated in the normal and the exceptional cases. This is not always possible but very
typical for parameter checking. Nested if-constructs are avoided by that.

Exceptions are Objects [Slide 73]

EOutOfCoffee = class(Exception)
private
...
public
property NumberOfEmptyPots: Integer ...;
end;

Exceptions can also have additional properties as they are objects.

35

Literature [Slide 74]

References
[1] Len Bass, Paul Clemens, and Rick Kazman. Software Architecture in Practice. SEI

Series in Software Engineering. Addison-Wesley, 2 edition, 2003.

[2] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture, volume 1: A System of Patterns. John
Wiley & Sons, 1996.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[4] Brian Goetz. Exceptional practices. http://www.javaworld.com/javaworld/
jw-08-2001/jw-0803-exceptions.html, Aug 2001.

[5] Joel Spolsky. The law of leaky abstractions. http://www.joelonsoftware.com/
articles/LeakyAbstractions.html, Nov 2002.

Licence [Slide 75]

Slides, talk notes and talk can be used under the terms of the following Creative Com-
mons Licence: CC-BY-SA 3.0 http://creativecommons.org/licenses/by-sa/3.0/

36

http://www.javaworld.com/javaworld/jw-08-2001/jw-0803-exceptions.html
http://www.javaworld.com/javaworld/jw-08-2001/jw-0803-exceptions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://creativecommons.org/licenses/by-sa/3.0/

	Motivation
	Why Layers?
	Why Exceptions?
	Putting Everything Together

	Dependencies and Layers
	Dependencies
	Coarse Structure
	Layers and Tiers

	Exceptions
	Exceptional Cases
	Exceptions: Basics
	Exceptions in Detail

	Putting Everything Together
	Exceptions and Layers
	Exceptions and Tiers

	Appendix

