Christian Rehn

Delphi-Treff

ADUG Sydney Meeting
5th November 2013

Christian Rehn
Began to program in 2001

Studies Computer Science at TU Kaiserslautern

Moderator and editor at Delphi-Treff (some German Delphi
website)

Employed at 1&1 Source Center since May
http://www.christian-rehn.de/

http://www.christian-rehn.de/

@ Few Text on the slides

o Better for Presentation
o Additionally detailed material online:
http://www.principles-wiki.net/about:start

@ Please give Feedback

http://www.principles-wiki.net/about:start

© A Story

© Principles

Principle Languages
(3) ple Languag
@ The Wiki

© Advantages

A Story

Remember, remember, the fifth
of November. ..

Christian Rehn Principle Languages

Once upon a time. ..

QBASIC

Delphi

Principles
Principle Languages

aaaaaaaaaa

IS AN NN

Christian Rehn Principle Languages

A Story

Principles

Principle Languages
The Wiki
Advantages

DANGER
MAN AT WORK

Christian Rehn Principle Languages

11

But the Code. ..

A Story

Principles

Principle Languages
The Wiki
Advantages

Christian Rehn

Principle Languages

13

BibDB

TSystem = class(TObject)
public
property SystemPart ...;
// ... aggregates all important system parts
end;

var
System: TSystem;

// Access:
System.SystemPart.Method();

Why?

Principles

Why?

A Story

n
Principle Languages
The Wiki
Advantages

How to tell good solutions and
bad solutions apart?

Christian Rehn Principle Languages

20

Analytic

KISS

Murphy's Law

Starke Bindung, lose Kopplung
DRY

SOLID (SRP, OCP, LSP, ISP, DIP)
Kapselung/Information Hiding

A principle is a rule of thumb which tells good solutions from bad
ones—with respect to one design aspect.

,Whatever can go wrong, will
go wrong"

A Story

Principles

Principle Languages
The Wiki
Advantages

Murphy's Law (ML)

Statement Whatever can go wrong, will go wrong. So a solution
is the better the fewer possibilities there are for
something to go wrong.

Rationale Humans make mistakes and this will never change.
So in the long run a possibility for a fault will
eventually result in a fault.

Example Date datel = new Date(2013, 01, 12);

Christian Rehn Principle Languages 25

new Date(2013, 01, 12);

Principles are conflicting

© const SQRT_2 = 1.4142135623730951;
@ function sqrt_2: Real;
© function sqrt(r: Real): Real;

@ function power(base, exponent: Real): Real;

@ class TComplexPolynomRootCalculator

KISS Adherence

Principle Languages

How to find suitable principles?

Principle Languages

General Principles MIMC? —{ iis generalization of

—> s specialization of
— is complementary to
— is contrary to

* contrary o KISS

* contrary to MIMC

? complementay to MP

Modularization Principles
Module Communication Principles
Interface Design Principles
Internal Module Design Principles

SS.

D—iﬁd—d

ML

EUHm > — TAPY

UPt ==pLs>

MP*] T ECV?

2 —is generalization of
MIMC —is specialization of

—is complementary to
— is contrary to
* contrary to KISS

General Principles
Modularization Principles

Module Communication Principles
Interface Design Principles
Internal Module Design Principles

contrary to MIMC
* complementay to MP

ML

EUHM — IAPY

Lspi3

UP* == pLS?

MPH— i ECV?

General Principles
Modularization Principles

Module Communicatien Principles
Interface Design Pri
Internal Module Desig

—iis generalization of
—p>is specialization of
—=is complementary to
—1 is contrary to

contrary ke KISS

2 contrary to MIMC
* complementay to MP

rinciples

7

EuHMz — AP

Upt == pLss

General Principles
Modularization Principles

Module Communication Principles
Interface Design Principles
Internal Module Design Principles

EUHM — IAPY

Lsp22

UP* == pLS?

—jis generalization of
—>is specialization of ||
—is complementary t
——{ is contrary to

* contrary to KISS

contrary to MIMC
* complementay to MP

—is generalization of
—>D s specialization of
—>is complementary to
— s contrary to

* contrary to KISS

2 contrary to MIMC
* complementay to MP

General Principles
Modularization Principles
Module Communication Principles
Interface Design Principles
Internal Module Design Principles

[l

UP* == pLs*

—jis generalization of
—Dis specialization of
—is complementary to
——{ is contrary to

* contrary to KISS

General Principles

Modularization Principles
Module Communication Principles
Interface Design Principles
tntemal Module Design Principles

contrary to MIMC
* complementay to MP

S — AP

EUHM?*

UP* == pLS?

—is generalization of
—4>is specialization of
—is complementary to
— is contrary to

* contrary to KISS

General Principles

Interface Design Principles
Intemal Module Design Principles

= contrary to MIMC
* complementay to MP

—jis generalization of
—Dis specialization of
—is complementary to
——{ is contrary to

* contrary to KISS

General Principles

Modularization Principles
Module Communication Principles
Interface Design Principles
tntemal Module Design Principles

contrary to MIMC
* complementay to MP

S — AP

EUHM?*

UP* == pLS?

o LC X

o KISS </
e RoE X
o TdA/IE X
o ML/

What is better?

Dependency Injection

The Wiki

www.principles-wiki.net

www.principles-wiki.net

Logged in as: Chiisian Rehn (chrisian) £ Admin &, Update Profie (1) Logout
Q

Recentchanges Media Manager Sitemap

Principles Wiki

‘You are here: Principles Wiki » Principles » Murphy’s Law (ML)

d
Contents Table of Contents -
o K
+ MainPage Murphy's Law (ML) * aptysLaw () s
+ Invoducton o te idea et + Varianis and Atemaiive Names | *
. o i i + Context
~ Princile Collections and Variants and Alternative Names et ®
Princlple Languages N o Q
Sl + Design for Errors’ Dessrpion N
= + Rationale
Veta) | e =
e Context o
e t
+ Glossary + Object-Oriented Design .
+ Intemal Suff + API Design B
B e desion Relaions o Other Princples
+ Generalizalons.
« Specializations
Principle Statement « Contrary Principles
+ Complementary Principles
Whatever can go wrong, will o wrong. So a solution is better the less + Principle Collections
possibilties there are for something to go wrong. Examples
= + Example 1: Parameters
Descripﬁon . Exnmn‘I;Z Castsand
+ Example 3: Date, Mutabil
‘Although often cited ke that, Murphy's Law actually is not a atalistic Hlasing v
comment stating ‘that ife is unfair". Rather it is (or at least can be seen « Desciption Staus
as) an engineering advice to design everything in a way that avoids wrong + Furher Reading
usage. This applies to everything that is engineered in some way and in * Discussion
particular also to al kinds of modules, (user) interfaces and systems.
Ideally an incorrect usage is strictly impossible. For example this is the case when the compiler wil stop vith
an error if a certain mistake is made. And in case of user interface design, a design is better when the user
cannot make incorrect inputs as the given controls won' let him.

www.principles-wiki.net

Advantages

@ Learning Design

@ Making Design Decisions

o Communication

Learning Design

Can you
teach me
how to design
software?

Charlie

(Apprentice)

Uhm...
that's difficult.
First of all
you need to
gain some
experience.

Dave

(Senior Developer)

Can you
teach me
how to design
software?

Charlie

(Apprentice)

Sure!
First of all
have a look
at these
principles...

Dave

(Senior Developer)

Making Design Decisions

Is this a
good solution

s 00

Alice

(Developer)

| have
no clue...

Is this a
good solution

I'll have
a look at the
Principle Language

= ° 00

Alice

(Developer)

Communication

‘our design is bad’
Don't use
a singleton here,

Dave ' Alice

(Senior Developer) (Developer)

Don't use

Dave

(Senior Developer)

Your design is bad

Alice

(Developer)

Principle Language

Principles or rules of thumb are a form of experience
reuse—just like patterns are

You can reason about design using principles
Principle languages point to further aspects to consider

Principle language for a vocabulary

www.principles-wiki.net

www.principles-wiki.net

@ The wiki gets enhanced and improved slowly but continuously

@ Further principles and principle language will follow
o Patterns and principles will be interconnected

@ Contributions are welcome

Questions?

Appendix

Strategies

his solution is bad
But | don't know
how to improve it.

Me neither, :-(

(é\!vulelggr) Bob

(Developer)

Alice

(Developer)

is solution is bad®
But | don't know
how to improve it.

look at the
strategries
ection.

Bob

(Developer)

Commit

Appendix

Alice

(Developer)

Christian Rehn

Principle Languages

68

Appendix

Alice

(Developer)

Christian Rehn

Principle Languages

69

Principles

Patterns
Anti-Patterns

Refactorings

Glossary Terms

Non-Principles

General Principles MIMC? —{ iis generalization of

—> s specialization of
— is complementary to
— is contrary to

* contrary o KISS

* contrary to MIMC

? complementay to MP

Modularization Principles
Module Communication Principles
Interface Design Principles
Internal Module Design Principles

SS.

D—iﬁd—d

ML

EUHm > — TAPY

UPt ==pLs>

MP*] T ECV?

	Anhang

