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@ Few Text on the slides

o Better for Presentation
o Additionally detailed material online:
http://www.principles-wiki.net/about:start

@ Please give Feedback
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Remember, remember, the fifth
of November. ..
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Once upon a time. ..



QBASIC



Delphi
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But the Code. ..
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BibDB



TSystem = class(TObject)
public
property SystemPart ...;
// ... aggregates all important system parts
end;

var
System: TSystem;

// Access:
System.SystemPart.Method();







Why?
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Why?
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How to tell good solutions and
bad solutions apart?
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Analytic



KISS

Murphy's Law

Starke Bindung, lose Kopplung
DRY

SOLID (SRP, OCP, LSP, ISP, DIP)
Kapselung/Information Hiding



A principle is a rule of thumb which tells good solutions from bad
ones—with respect to one design aspect.




,Whatever can go wrong, will
go wrong"
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Murphy's Law (ML)

Statement Whatever can go wrong, will go wrong. So a solution
is the better the fewer possibilities there are for
something to go wrong.

Rationale Humans make mistakes and this will never change.
So in the long run a possibility for a fault will
eventually result in a fault.

Example Date datel = new Date(2013, 01, 12);
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new Date(2013, 01, 12);



Principles are conflicting



© const SQRT_2 = 1.4142135623730951;
@ function sqrt_2: Real;
© function sqrt(r: Real): Real;

@ function power(base, exponent: Real): Real;

@ class TComplexPolynomRootCalculator



KISS Adherence
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How to find suitable principles?
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What is better?



Dependency Injection
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www.principles-wiki.net

Logged in as: Chiisian Rehn (chrisian) £ Admin &, Update Profie (1) Logout
Q

Recentchanges Media Manager Sitemap

Principles Wiki

‘You are here: Principles Wiki » Principles » Murphy’s Law (ML)

d
Contents Table of Contents -
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+ MainPage Murphy's Law (ML) * aptysLaw () s
+ Invoducton o te idea et + Varianis and Atemaiive Names | *
. o i i + Context
~ Princile Collections and Variants and Alternative Names et ®
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Whatever can go wrong, will o wrong. So a solution is better the less + Principle Collections
possibilties there are for something to go wrong. Examples
= + Example 1: Parameters
Descripﬁon . Exnmn‘I;Z Castsand
+ Example 3: Date, Mutabil
‘Although often cited ke that, Murphy's Law actually is not a atalistic Hlasing v
comment stating ‘that ife is unfair". Rather it is (or at least can be seen « Desciption Staus
as) an engineering advice to design everything in a way that avoids wrong + Furher Reading
usage. This applies to everything that is engineered in some way and in * Discussion
particular also to al kinds of modules, (user) interfaces and systems.
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an error if a certain mistake is made. And in case of user interface design, a design is better when the user
cannot make incorrect inputs as the given controls won' let him.
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@ Learning Design

@ Making Design Decisions

o Communication



Learning Design



Can you
teach me
how to design
software?

Charlie

(Apprentice)

Uhm...
that's difficult.
First of all
you need to
gain some
experience.

Dave

(Senior Developer)




Can you
teach me
how to design
software?

Charlie

(Apprentice)

Sure!
First of all
have a look
at these
principles...

Dave

(Senior Developer)




Making Design Decisions



Is this a
good solution

s 00

Alice

(Developer)

| have
no clue...




Is this a
good solution

I'll have
a look at the
Principle Language

= ° 00

Alice

(Developer)




Communication



‘our design is bad’
Don't use
a singleton here,

Dave ' Alice

(Senior Developer) (Developer)




Don't use

Dave

(Senior Developer)

Your design is bad

Alice

(Developer)




Principle Language



Principles or rules of thumb are a form of experience
reuse—just like patterns are

You can reason about design using principles
Principle languages point to further aspects to consider

Principle language for a vocabulary

www.principles-wiki.net


www.principles-wiki.net

@ The wiki gets enhanced and improved slowly but continuously

@ Further principles and principle language will follow
o Patterns and principles will be interconnected

@ Contributions are welcome
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Strategies



his solution is bad
But | don't know
how to improve it.

Me neither, :-(

(é\!vulelggr) Bob

(Developer)




Alice

(Developer)

is solution is bad®
But | don't know
how to improve it.

look at the
strategries
ection.

Bob

(Developer)




Commit



Appendix

Alice

(Developer)
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Appendix

Alice

(Developer)
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Principles

Patterns
Anti-Patterns

Refactorings

Glossary Terms

Non-Principles
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